

# **Biodistribution et Métabolisme par l'Imagerie**

Claire Corot, JS Raynaud, JF Salazar, S Catoen RECHERCHE GUERBET

18 mai 2011 Journée Nationale Académie de Pharmacie



# Imagerie et Biologie : Différents niveaux





# Les facteurs clés de succès en imagerie





# Modalités d'imagerie : Positionnement





#### **Relative Attributes of Molecular Imaging Modalities**

|                  |                  | Resolution |              |          |
|------------------|------------------|------------|--------------|----------|
| Modality         | Sensitivity      | Spatial    | Temporal     | Contrast |
| СТ               | - <del> </del> - | ++         | +            | ++       |
| MR imaging       | ++               | +++        | ++           | +++      |
| Nuclear medicine | +++              | ÷          | +            | ++       |
| Optical imaging  | +++              | +          | <u>+</u> ++  | +++      |
| US               | ++               | +++        | <b>┿ ╋</b> ╇ | ++       |

Note.-+ = low resolution, ++ = intermediate resolution,

+++ = high resolution.

#### Guerbet 🛛 🏭

Développement de plateformes d'imagerie pour le petit animal Center For Molecular Imaging Research MGH - Boston





### L'IRM à haute résolution











Guerbet 🛛 🏭

### Les progrès de l'imagerie médicale





### Imagerie anatomique

1<sup>ère</sup> génération de produits de contraste



### Imagerie fonctionnelle

2<sup>e</sup> génération de produits de contraste



### Imagerie moléculaire

3<sup>e</sup> génération de produits de contraste



Page 7

### Les agents de contraste en imagerie









# Imagerie translationnelle Développement de médicaments en Neurologie



Page • 10

From E Rabiner, GSK Translational Imaging Marcus Events London 2009

Guerbet

### Développement de médicament : Objectifs en imagerie expérimentale





### Le champ d'applications de l'imagerie médicale





Disease

Function

Targets

Pathways

Structure





Organ

Tissue

Receptors

Cellular

Genomic

Figure 1 | Locus of imaging in drug development — from disease to genomics and back again. The figure shows the spectrum that imaging covers from molecular (for example, positron-emission tomography (PET)) and functional (for example, fMRI) imaging to its use in molecular diagnostics and a link togenomic profiling in the clinical and preclinical domains. Potential targets (circuits or specific regions) can be evaluated in the context of the role they play in functional pathways, and can be studied in the preclinical domains using more invasive processes, including molecular and cellular imaging, before detailed evaluation using high-field and high-resolution functional, neuroanatomical and microimaging techniques. (Thanks to K. Moldoff for permission to use some of these graphics)

Exemple d'application pour le développement de médicaments en neurologie



| Biodistribution                                                                    | Occupancy                                                                                                   |  |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| Measures brain uptake of the radiolabelled<br>drug candidate                       | Measures the effect of a drug candidate<br>on the binding of a radiolabeled ligand to<br>a specific target. |  |
|                                                                                    | Provides direct measure of occupancy.                                                                       |  |
| Requires radiolabelling of the drug<br>candidate with C-11 or F-18, often feasible | Requires the existence or development<br>of a radioligand, not always feasible                              |  |



From E Rabiner, GSK Translational Imaging Marcus Events London 2009

### Passage de médicaments à travers la BHE







Blood volume

Good uptake SUV=3

No uptake

#### no extra-vascular component



Some uptake in brain

extravascular component SUV= 0.1

Pharmacokinetic studies with PET Bergström M. & al. Progress in drug research 2005



### **Modélisation Données PET : Quantification**





### Quantification Traceur PET Prise en compte du métabolisme dans les données d'entrée





Guerbet 🛛 🏭

from Suzuki et al., NMB, 2003

## **PET Radiotraceur biodistribution : Quantification**



### Time-activity curves (TACs) in Region of Interest (ROI)



#### Guerbet 🛛 🏭

### Imagerie des plaques amyloïdes : Cinétique de captation cérébrale et wash out



#### **Preclinical Properties of <sup>18</sup>F-AV-45: A PET** Agent for Aβ Plaques in the Brain

Seok Rye Choi<sup>1</sup>, Geoff Golding<sup>1</sup>, Zhiping Zhuang<sup>1</sup>, Wei Zhang<sup>1</sup>, Nathaniel Lim<sup>1</sup>, Franz Hefti<sup>1</sup>, Tyler E. Benedum<sup>1</sup>, Michael R. Kilbourn<sup>2</sup>, Daniel Skovronsky<sup>1,3</sup>, and Hank F. Kung<sup>3,4</sup>

<sup>1</sup>Avid Radiopharmaceutical Inc., Philadelphia, Pennsylvania; <sup>2</sup>Department of Radiology, University of Michigan, Ann Arbor, Michigan; <sup>3</sup>Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania; and <sup>4</sup>Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania



M. Patt · A. Schildan · H. Barthel · G. Becker · M. H. Schultze-Mosgau · B. Rohde · C. Reininger · O. Sabri

J Radioanal Nucl Chem (2010) 284:557-562







Fig. 6 Radiochromatogram of a protein-free plasma sample taken 20 min p.i. of 300 MBq [<sup>18</sup>F]Florbetaben, using HPLC method B (column PRP-1, 305 × 7 mm, 10 μm, flow 3 mL/min, injection volume 5 mL, gradient: Table 1)



### Barthel P Lancet Neurol 2011



Page • 18

### PET Imaging of Leptin Biodistribution and Metabolism in Rodents and Primates Ceccarini G & al, Cell Metab 2009, 10(2):148-159





Blocking experiments of leptin uptake in the kidney in wild type and Lep-R deficient animals



Compétition

#### Dégradé Intact

Leptin

32



#### D .......... 11111111111 0.7 0.0 nbtake wild-type I I I I I I I kidney 0.4 wild-type ob/ob wild-type 0.3 ob/ob-+ leptin Lep-R∆ 0.2 500 1000 1500 2000 400 1200 1600 2000 800 time(s) time(s) u\_rhet

Page

### PET Imaging of Leptin Biodistribution and Metabolism in Rodents and Primates <u>Ceccarini G & al, Cell Metab 2009, 10(2):148-159</u>

Time positiniection (m





Time postiniection (min

#### **Primate PET imaging**

- Images were acquired 10 minutes post injection of 15 MBq <sup>68</sup>Ga-DOTAleptin or <sup>18</sup>F-FBA-leptin. A-B) Coronal MIP acquired 10 minutes post injection
- In addition to kidney
- substantial leptin binding to red bone marrow in rhesus macaques
  - 15.8 and 16.4% of <sup>68</sup>Ga-DOTAleptin localized to and was retained in the bone marrow in a saturable manner









# <sup>18</sup>FDG : Traceur TEP de la consommation du glucose



Sosuke Miyoshi, Translational Imaging, Marcus Events, London 2009

#### Early detection of the effect of drug treatment?

GIST response to Glivec measured by <sup>18</sup>FDG 



### FDG (PET) : fonctionnement synaptique Dégénerescence neuronale



### Métabolisme du glucose ⇔ <sup>18</sup>F-FDG en PET







Alzheimer : Les études cliniques actuelles longitudinales montrent une conversion plus importante vers la maladie d'alzheimer des patients amyloide-PET positif



#### **Cognitif OK** Cognitif OK Cognitif Déficit **PIB Negatif PIB** Positif **PIB** Positif **MRI** Negatif **MRI** Negatif **MRI** Positif Abnormal 🔺 A 3.0 2.0 Biomarker magnitude 1.5 1.0 0.5 Neuronal injury and dysfunction MR Norma Clinical disease stage

#### Figure 1. Illustration of biomarker staging of Alzheimer's disease

Three elderly individuals are placed in order from left to right by use of our proposed biomarker staging scheme. (A) A cognitively normal individual with no evidence of A $\beta$  on PET amyloid imaging with PiB and no evidence of atrophy on MRI. (B) A cognitively normal individual who has no evidence of neurodegenerative atrophy on MRI, but has significant A $\beta$  deposition on PET amyloid imaging. (B) An individual who has dementia and a clinical diagnosis of Alzheimer's disease, a positive PET amyloid imaging study, and neurodegenerative atrophy on MRI. A $\beta$ = $\beta$ -amyloid. PiB=Pittsburgh compound B.

Jack C et al Lancet Neurol, 2010



Page = 25

### fMRI : Evaluation du fonctionnement cérébral par mesure de la consommation d'oxygène



Neurotech

Guerbet



### MR spectroscopie : métabolisme in vivo



| Nucleus         | γ [MHz/T] | Sensitivity<br>of detection | Applications                                                                                                                                                                                                                           |  |  |
|-----------------|-----------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ΊΗ              | 42.58     |                             | <ul> <li>Total choline+*</li> <li>Lactate+*</li> <li>Lipid+*</li> <li>N-acetyl-aspartate+</li> <li>Citrate+</li> <li>Extracellular pH (pHe)+</li> <li>Treatment efficacy+*</li> <li>Detection of metastasis+*</li> <li>pO2+</li> </ul> |  |  |
| <sup>19</sup> F | 40.08     |                             | Drug pharmacokinetics+*     pHe+     pO2+     Enzyme activity+     Labeled substrate utilization+                                                                                                                                      |  |  |
| <sup>31</sup> P | 17.25     |                             | <ul> <li>Energy metabolism (ATP, PCr, Pi)+*</li> <li>Intracellular pH (pHi)+*</li> <li>Phospholipid metabolism+*</li> </ul>                                                                                                            |  |  |
| <sup>13</sup> C | 10.71     |                             | <ul> <li>Labeled substrate utilization to evaluate<br/>drug pharmacokinetics and metabolic<br/>pathways+*</li> </ul>                                                                                                                   |  |  |



### Spectroscopie IRM – Métabolisme et physiopathologie



Glunde K et al, 2010



### **Spectroscopie IRM**



### Applications limitées car faibles sensibilité et résolution spatiale

# Cartographie des métabolites : ATP, phosphocreatine, choline ...

- Neuro: tumeurs, démence
- Cancer de la prostate
- Myopathies







### **13C hyperpolarisation MRI : Cycle Krebs in vivo Demi-vie très courte de l'hypepolarisation**



# Hyperpolarized <sup>13</sup>C-labeled Pyruvate



Page - 30 D Spielman, Stanford Univ

#### Guerbet 🛛 🏭

### **13C Hyperpolarisation MRI** 13C(HP)-pyruvate imagerie tumorale







Page • 31

Golman, CancerResearch, 2006

31



Guerbet 🛛 🏭

#### Caractérisation tumorale





#### a Tumour metabolism

 Radiolabelled glucose, amino acids, choline





e Tumour hypoxia
 Radiolabelled MISO, ATSM, FAZA

#### PET-CT





- **b** Tumour proliferation
- Radiolabelled thymidine analogues: JUdR, FMAU, FLT



#### Willmann J K & al. nature reviews drug discovery, 2008







c Apoptosis in tumour

- Radiolabelled annexin V
- Caspase



#### d Tumour angiogenesis

- Radiolabelled RGD, α<sub>x</sub>β<sub>3</sub>-targeted paramagnetic nanoparticles
- $\alpha, \beta$  / VEGFR2-targeted microbubbles



## **DCE MRI** suivi thérapeutique

# Vascular Permeability during Antiangiogenesis Treatment: MR Imaging Assay Results as Biomarker for Subsequent Tumor Growth in Rats<sup>1</sup>



Hans-Juergen Raatschen, MD Gerhard H. Simon, MD Yanjun Fu, PhD Barbara Sennino, PhD David M. Shames, MD Michael F. Wendland, PhD •0 mg bevacizumab (n 4 [control rats] Donald M. McDonald, MD, PhD Robert C. Brasch, MD





#### **Dose levels:**

- •0.1 mg bevacizumab (n 3)
- •0.25 mg bevacizumab (n 2)
- •0.5 mg bevacizumab (n 5)
- 1.0 mg bevacizumab (n 3)





## DCE MRI suivi thérapeutique



# Inflammatory Breast Cancer:

Dynamic Contrast-enhanced MR in Patients Receiving Bevacizumab— Initial Experience<sup>1</sup>



Arpi Thukral, MD David M. Thomasson, PhD Catherine K. Chow, MD Reyes Eulate, MD Suparna B. Wedam, MD Sandeep N. Gupta, PhD Betty J. Wise, BS, RT(R)MR Seth M. Steinberg, PhD David J. Liewehr, PhD Peter L. Choyke, MD Sandra M. Swain, MD<sup>2</sup>

|                             | Cycle 1 to Cycle 4        |                      | Cycle 4 to Cycle 7        |          |
|-----------------------------|---------------------------|----------------------|---------------------------|----------|
| Parameter                   | Median Percentage Change* | P Value <sup>†</sup> | Median Percentage Change* | P Value† |
| Brix amplitude <sup>‡</sup> | -33 (-100 to 65)          | .003                 | 2 (-100 to 120)           | .46      |
| Brix K <sub>ep</sub>        | -45 (-100 to 78)          | .002                 | -13 (-100 to 203)         | .86      |
| GKM K <sup>trans</sup>      | -58 (-97 to 80)           | .01                  | -12 (-85 to 240)          | .76      |
| GKM K <sub>ep</sub>         | -47 (-84 to 134)          | .05                  | -14 (-96 to 296)          | .89      |
| Slope wash-in               | -47 (-81 to 245)          | .02                  | -10 (-83 to 180)          | .39      |
| Slope washout               | -28 (-1017 to 2806)       | .96                  | -38 (-519 to 228)         | .36      |
| IAUGC 90 <sup>§</sup>       | -50 (-100 to 200)         | .12                  | -35 (-100 to 50)          | .13      |
| IAUGC 180 <sup>§</sup>      | -44 (-94 to 71)           | .007                 | 0 (-67 to 50)             | .52      |

#### Guerbet 🛛 🏭

### Ischémie cérébrale : Imagerie de diffusion et de perfusion



Guerbet

- Modifications précoces après un accident
  - Détection précoce de la zone en souffrance dès 30 min post ischémie (vs plusieurs heures en CT ou en IRM conventionelle)
  - Chute de l'ADC liée à l'oedème cytotoxique (gonflement cellulaire)
  - Permet de "dater" l'événement ischémique
- Notion de mismatch diffusion / perfusion
  - Association avec l'imagerie de perfusion au premier passage (pondération T2\*)
  - Plus le mismatch est important, meilleur est le pronostique



### Imagerie de l'inflammation par IRM Nanoparticules d'oxyde de fer ciblant les macrophages Modèles de plaques d'athérome





Sclérose en plaque : suivi de traitement Imagerie de l'inflammation par IRM Nanoparticules d'oxydes de fer ciblant les macrophages



# Modèle de sclérose en plaque chez le rat





Aigue



Rechute



#### Guerbet 🛛 🏭

#### Rausch et al, JMRI 2004

### Mesure du pH in vivo Produits de contraste IRM dont l'effet paramagnétique varie en fonction du pH





Garcia-Martin, et al., Magn. Reson. Med., 55, 309-315 (2006) Guerbet 🔛





Guerbet 🛛 🏭

### Imagerie moléculaire du récepteur EGFR muté Ciblage néo-angiogenesis en Imagerie expérimentale



#### **PET Tracer**

Molecular imaging of active mutant L858R EGF receptor (EGFR) kinase-expressing nonsmall cell lung carcinomas using PET/CT



Yel & al, PNAS, 2011

#### **MRI Tracer**

Targeted Signal-Amplifying Enzymes Enhance MRI of EGFR Expression in an Orthotopic Model of Human Glioma



#### Shazeeb & al, Cancer Research, 2011

#### Guerbet 🛛 🏭

## **PET Imaging in mice : transgenic expression**

#### Thymidine kinase gene expression

A, Injection of  $1.53 \times 10^9$  plaque-forming units of control virus. B, Injection of  $1.53 \times 10^9$  plaque-forming units of the replication-deficient adenovirus.

Left : whole-body mean coronal projection PET scan of the <sup>18</sup>F activity distribution was obtained. The location of the liver (dotted white outline) was determined from both the 8-[<sup>18</sup>F]fluoroganciclovir signal and the cryostat slices (second from right).

Coronal micro-PET sections (second from left) are approximately 2-mm thick.

After PET, the mice were sectioned (second from right), and autoradiography (Antorad) was performed (right).





### **CEST Chemical Exchange Shift Transfer** Lysin rich reporter gene



Figure 3. CEST imaging of lysine rich-protein (LRP) reporter. (A) Frequency-selective radiofrequency pulses excite the amide protons. These protons exchange with water protons, thereby reducing the MRSI signal intensity (SI) of the water signal by  $\Delta$ SI. (B) Ex vivo proof-of-principle MRSI of the LRP reporter protein in phantoms demonstrated that the LRP-containing phantom displayed significantly higher  $\Delta$ SI when excited at  $\pm$ 3.76 ppm as compared to poly-L-lysine, phosphate-buffered saline, or green fluorescent protein as controls (scale bar, 1 mm). (C) Anatomical image (left) and CEST signal intensity-difference map overlaid on the anatomical image (right) was able to distinguish the LRP-expressing and control tumor xenografts. Adapted from ref 114.



Guerbet 🔛

#### Glunde K et al, 2010

### Marquage cellules souches



### Marquage ex vivo avec nanoparticules d'oxyde de fer

- Réinjection IV des cellules marquées
  - Adressage cellulaire
  - Suivi des cellules transplantées (migration)
- Réinjection in situ des cellules marquées
  - Migration cellulaire : cellules neurales
  - Division cellulaire

### Marquage in vivo

Endocytose des nanoparticules d'oxyde de fer par les cellules sanguines et suivi de leur migration dans les tissus pathologiques (ex monocyte/macrophage)



### Ischémie cérébrale : migration de cellules souches



- Ischémie cérébrale chez le rat
- Cellules souches implantée après marquage magnétique (USPIO)
- Imagerie @ 7 T (Bruker BioSpec)
- Résolution : 78 × 49 × 78 μm<sup>3</sup>

#### Sites d'implantation

Ischémie



Migration des cellules souches

### CONCLUSION



### Imagerie expérimentale chez l'animal

- Etudes pharmacologiques : évaluation anatomique et fonctionnelle non invasive
- Etudes Toxicologiques : Suivi dynamique d'anomalies tissulaires (nécrose, métabolisme, perfusion....)
- Recherche en génomique, thérapie cellulaire

### Pas de techniques d'imagerie universelle

- Résolution spatiale
- Résolution temporelle
- Contraste
- Coût

### Agents de contraste

- Nécessaires pour chaque modalités d'imagerie
- Nouveaux développements => Specificité



### **Recherche translationnelle**

### Preuve de concept chez l'animal

- Accessibilité
- Binding
- Effet biologique / pharmacologique
- Examens répétés chez le même animal permettant des études longitudinales
- Quantification d'un effet pharmacologique
- Identification de métabolisme
  - De médicaments
  - D'effets physiopathologiques
- Méthodologie transférable chez l'homme
- Biomarqueurs / surrogates



# IRM – PET i.e. Imagerie Multimodale







Temporal co-registration



Pediatric oncology : minimize radiation dose (vs PET/CT)

### Spatial co-registration



### Minimise effect of motion



### Imagerie multimodale : IRM et optique



### Sondes bimodales (MRI + Optical)

Imagerie de l'accumulation du cRGD-CLIO- (Cy5.5) Nanoparticule par fluorescence et IRM.



Montet X et al . Neoplasia (2006) ; 8: 214 (Weissleder Group)



### **Recherche Guerbet – Une équipe pluridisciplinaire**







