Use of cellular metabolomics (or fluxomics) for predicting the safety and efficacy of drug candidates

Gabriel Baverel, DVM, PhD

Professor: Metabolic Biochemistry and Pathophysiology (EA 4611)
CEO: Metabolys

R.T.H. Laennec Faculty of Medicine, Lyon, France
gabriel.baverel@univ-lyon1.fr
The Problem; The solution / The offer

➢ The problem

• In pharmaceutical companies, drug development costs over 1 B. US dollars, lasts 10 - 12 years and the attrition rate is high despite more investments.

• Omics (transcriptomics, proteomics, metabolomics)

• Reasons (PK, efficacy, safety)

➢ The offer : Unique approach = cellular metabolomics

• Predict the pharmaco-toxicological interactions of test compounds with the metabolic pathways of any human or animal cell type in vitro

• Contribute to the discovery and development of drug candidates / chemicals (efficacy / safety)
Definitions

Metabolomics = large scale measurement of the metabolite composition of biological fluids (plasma, urine...)

Classical tools

• Magnetic Resonance Spectroscopy
• Mass Spectroscopy

They are complementary
Traditional metabolomics
1H NMR spectrum of normal human urine
\(^1\text{H} \) NMR spectrum of the urine of a patient treated by ifosfamide (IF), an anticancer drug

before IF

after IF

Metabolic signature:
Glycosuria \(\Rightarrow\) hypothesis

- Is IF diabetogenic? and, if so, by which mechanisms?
- Is IF toxic to the proximal tubule? and, if so, by which mechanisms?
Typical metabolomic study

- **Methods**
 - Very sophisticated analytical techniques

- **Results**
 - Identification of differences by elaborate computations

- **Discussion**
 - “the data suggest that condition X induces substantial alterations in the regulation of pathways Y and Z”

 - This is OK for biomarker identification
 - This is not OK for identifying new mechanisms
Development and applications of cellular metabolomics
Innovative technological approach = Cellular Metabolomics (Metabolic Flux Analysis)

➢ Which combines:

• Metabolically differentiated cell models that retain their in vivo properties

• Measurement of substrate uptake and product formation by enzymatic and complex, innovative techniques (13C NMR)

• Original mathematical models

• A know-how based on a long experience and a skilled multi-disciplinary team

NMR platform € 1.2 M
Cellular Metabolomics (Metabolic Flux Analysis)

➢ Provides in vitro and ex vivo
 • Panoramic view of:
 ✓ Fluxes through cellular metabolic pathways (glucose, glutamine, glutamate, etc...)
 ✓ Adverse/beneficial effects on these pathways

➢ Has been validated and used for
 • Prediction safety/efficacy of cand. / biologics (mg amounts)
 • Metabolic phenotype of cell lines and cancer cells
Effect of antidiabetic drugs or candidates
Effect of Insulin on the metabolism of 13C-Glucose in liver cells from fed Wistar rats (incubation for 24 hours)
(Enzymatic data)

<table>
<thead>
<tr>
<th>Exp. Condition</th>
<th>Glucose</th>
<th>Glycogen</th>
<th>Lactate</th>
<th>Triglycerides</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-Glucose</td>
<td>-1286 ± 268</td>
<td>-3948 ± 211</td>
<td>1456 ± 125</td>
<td>-7 ± 4</td>
</tr>
<tr>
<td>13C-Glucose + Insulin</td>
<td>-3135 ± 305*</td>
<td>-3106 ± 271*</td>
<td>1550 ± 108</td>
<td>80 ± 7*</td>
</tr>
</tbody>
</table>

Values (in µmol/g.protein/24 hrs) are means ± SEM for 6 experiments; *p < 0.05
Effect of Insulin on the metabolism of $^{13}\text{C}\text{-Glucose}$ in liver cells from fed Wistar rats (incubation for 24 hours) (NMR data)

<table>
<thead>
<tr>
<th>Exp. Condition</th>
<th>Glucose (Enz.)</th>
<th>$^{13}\text{C-Glc}$</th>
<th>$^{13}\text{C-Glc}$</th>
<th>$^{13}\text{C-Glg}$</th>
<th>$^{13}\text{C-Lac}$</th>
<th>$^{13}\text{C-TG}$</th>
<th>$^{13}\text{CO}_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{13}\text{C-Glucose}$</td>
<td>-1286 ± 268</td>
<td>-3787 ± 450</td>
<td>851 ± 85</td>
<td>9 ± 2</td>
<td>368 ± 42</td>
<td>77 ± 15</td>
<td>2046 ± 475</td>
</tr>
<tr>
<td>$^{13}\text{C-Glucose}$ + Insulin</td>
<td>-3135 ± 305*</td>
<td>-5981 ± 428*</td>
<td>976 ± 48</td>
<td>148 ± 39*</td>
<td>463 ± 41*</td>
<td>338 ± 52*</td>
<td>3475 ± 447</td>
</tr>
</tbody>
</table>

Values (in µmol/g.protein/24 hrs) are means ± SEM for 6 experiments; *p < 0.05
Acute effect of metformin on the metabolism of 13C-lactate by liver cells from fed non-diabetic and diabetic ZDF rats
Beneficial and adverse effects of an antidiabetic candidate in rat liver cells

Académie de Pharmacie.
20 February 2013
Valproate efficacy and nephrotoxicity
Valproate efficacy

- Valproate (Depakine) = antiepileptic drug
- MOA: Increase in brain GABA concentration
Effect of valproate on [3-13C]glutamate metabolism (60 min) (NMR data)
Effect of valproate on [3-^{13}C]glutamate metabolism (60 min) (Enzymatic fluxes)

Académie de Pharmacie.
20 February 2013
Valproate nephrotoxicity

Problem: Adverse effect: hyperammonemia

• Inhibition of hepatic urea synthesis
• Stimulation of renal glutamine uptake
• Stimulation of renal ammoniagenesis

Question:
• Which enzymatic step?

Strategy:
• Cellular metabolomics (panoramic view of metabolic pathways)
Effect of valproate on flux through enzymes of glutamine metabolism in human precision-cut kidney-cortex slices

Added value:

- mechanism(s) of toxic effect

- methods of screening for other valproate-related antiepileptics
Effect of nephrotoxic compounds

- Cephaloridine, a β-lactam antibiotic
- Ifosfamide, an anticancer drug
Effect of cephaloridine on the metabolism of 13C-Succinate in isolated rabbit renal proximal tubules (NMR data)

<table>
<thead>
<tr>
<th>Exp. Condition</th>
<th>Succinate</th>
<th>Fumarate</th>
<th>Malate</th>
<th>Glucose</th>
<th>Lactate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C2+C3</td>
<td>C2+C3</td>
<td>C2</td>
<td>C3</td>
<td>C1</td>
</tr>
<tr>
<td>13C-Succinate</td>
<td>-14350 ±1159</td>
<td>1816 ±237</td>
<td>3203 ±402</td>
<td>3229 ±404</td>
<td>611 ±39</td>
</tr>
<tr>
<td>13C-Succinate + Cephaloridine</td>
<td>-14311 ±1205</td>
<td>2310 ±340*</td>
<td>1428 ±610*</td>
<td>1418 ±634*</td>
<td>258 ±56*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>258 ±43*</td>
</tr>
</tbody>
</table>

Values (in µmol/g dry weight/4 hrs) are means ± SEM for 4 experiments; *p < 0.05
Effect of cephaloridinidine on the production of $^{13}\text{CO}_2$ from ^{13}C-Succinate and on the ATP cellular levels

<table>
<thead>
<tr>
<th>Exp. Condition</th>
<th>$^{13}\text{CO}_2$ From [1,4-^{13}C]succinate</th>
<th>$^{13}\text{CO}_2$ From [2,3-^{13}C]succinate</th>
<th>ATP (µmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{13}C-Succinate</td>
<td>4887 ±680</td>
<td>290 ±51</td>
<td>7.28 ±0.96</td>
</tr>
<tr>
<td>^{13}C-Succinate + Cephaloridinidine</td>
<td>2966 ±377*</td>
<td>342 ±14</td>
<td>4.97 ±0.48*</td>
</tr>
</tbody>
</table>

Values (in µmol/g dry weight/4 hrs) are means ± SEM for 4 experiments; *p < 0.05
Académie de Pharmacie.
20 February 2013
Glucose → Pyruvate → Lactate → (Chloro)acetaldehyde

Pyruvate → Oxaloacetate → Acetyl-CoA → (Chloro)acetate

Acetyl-CoA → Krebs Cycle → 2CO₂

LDH: Lactate Dehydrogenase
PC: Pyruvate Carboxylase
PDH: Pyruvate Dehydrogenase
CoA: Coenzyme A
Acute toxicity of CAA

Human kidney tubules incubated for 1 hr

% of LDH released

Concentration of CAA (mM)

CAA (mM)

0 0.1 0.2 0.3 0.4 0.5

µmol/g dry wt

ATP

Concentration of CAA (mM)

0 0.1 0.2 0.3 0.4 0.5

Académie de Pharmacie.
20 February 2013
Metabolism of 2-13C-chloroacetaldehyde by human renal proximal tubules (13C NMR spectra)

\begin{itemize}
\item \textbf{T=0 min}
 \begin{itemize}
 \item 48.5 ppm CAA surf: 19408
 \item 42.7 ppm GLY surf: 26375
 \end{itemize}
\end{itemize}

\begin{itemize}
\item \textbf{T=60 min}
 \begin{itemize}
 \item 44.9 ppm CAT surf: 9476
 \item 42.7 ppm GLY surf: 15188
 \end{itemize}
\end{itemize}

13C NMR spectra

13C NMR spectra
Cellular metabolomics:

- Provides in vitro a panoramic view of the metabolism of physiological substrates in any normal or pathological human or animal cell type.
- Combines enzymatic, (radioactive) and 13C NMR methods with mathematical models of metabolic pathways.
- Allows to identify and quantify (fluxes) metabolic pathways.
- Is complementary of but differs from other omics in that it provides functional pieces of information.
• Allows to identify early in the drug development process the pharmaco-toxicological interactions of very small amounts of drug candidates (acute and chronic effects).

• Therefore allows to assess simultaneously the efficacy and safety of drug candidates:
 ✓ Efficacy (areas: metabolic diseases; oncology; neurodegenerative diseases)
 ✓ Safety: any drug from any therapeutic area
Glutamine metabolism in kidney tubules from fed and fasted rats
General scheme of glutamine metabolism in mammalian tissues

Glucose → Phosphoenolpyruvate → Pyruvate → Lactate

Glucose → CO₂ → Oxaloacetate → CO₂ → CO₂ → Citrate → Acetyl-CoA

Aspartate → CO₂ → Oxaloacetate → CO₂

α-Ketoglutarate → CO₂ → Glutamate → NH₄⁺ → GLDH → Aspartate

Glutamate → NH₄⁺ → Glutamine → GLNase → GSH → GABA

Puric and pyrimidic bases → Pyruvate → Lactate

Académie de Pharmacie.
20 February 2013
13C NMR spectra (125.75 MHz) of neutralized perchloric extracts obtained from fed (A) and fasted (B) rat kidney tubules incubated with [3-13C] glutamine.

Académie de Pharmacie.
20 February 2013
Labeling of the C1, C2, C5 and C6 of glucose, and the C2 and C3 of lactate and alanine from [3-^{13}C]glutamine

Académie de Pharmacie.
20 February 2013
Schematic representation of the fate of the C1, C2 and C3 of glutamine in rat kidney tubules

Académie de Pharmacie.
20 February 2013

35
Effect of fasting on fluxes through pathways of glutamine metabolism in rat kidney tubules

\[\text{Glucose} \rightarrow \text{Pyruvate} \rightarrow \text{Oxaloacetate} \rightarrow \text{DONCE cycle} \rightarrow \text{Glutamate} \rightarrow \text{Glutamine} \]

- Multicycle
- Complexity of gluconeogenesis
- Heterogeneity

\(n = 4 \) experiments performed in quadruplicate; \(\mu \text{mol.g dry wt}^{-1.\text{h}^{-1}} \); * \(P < 0.05 \)