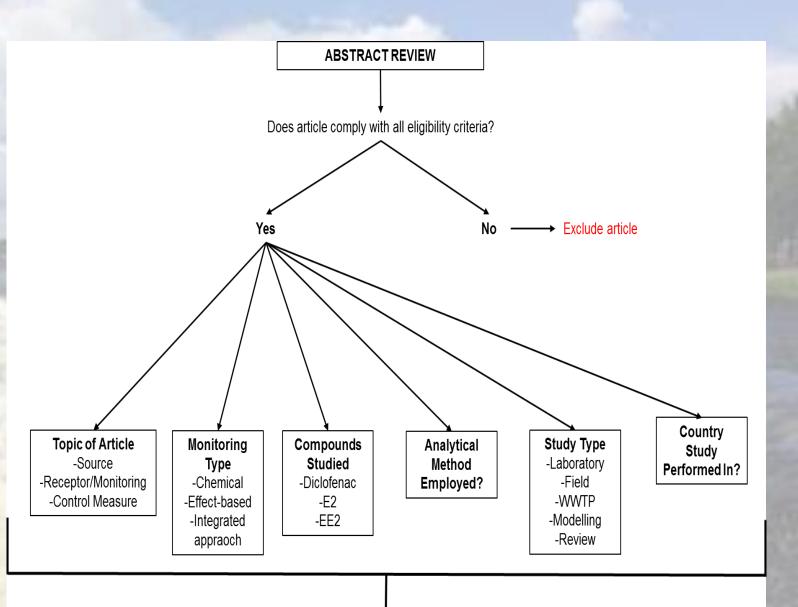
Investigation of the implications for Ireland of emerging standards on pharmaceuticals in receiving waters

Prof. Neil Rowan Athlone Institute of Technology Ireland

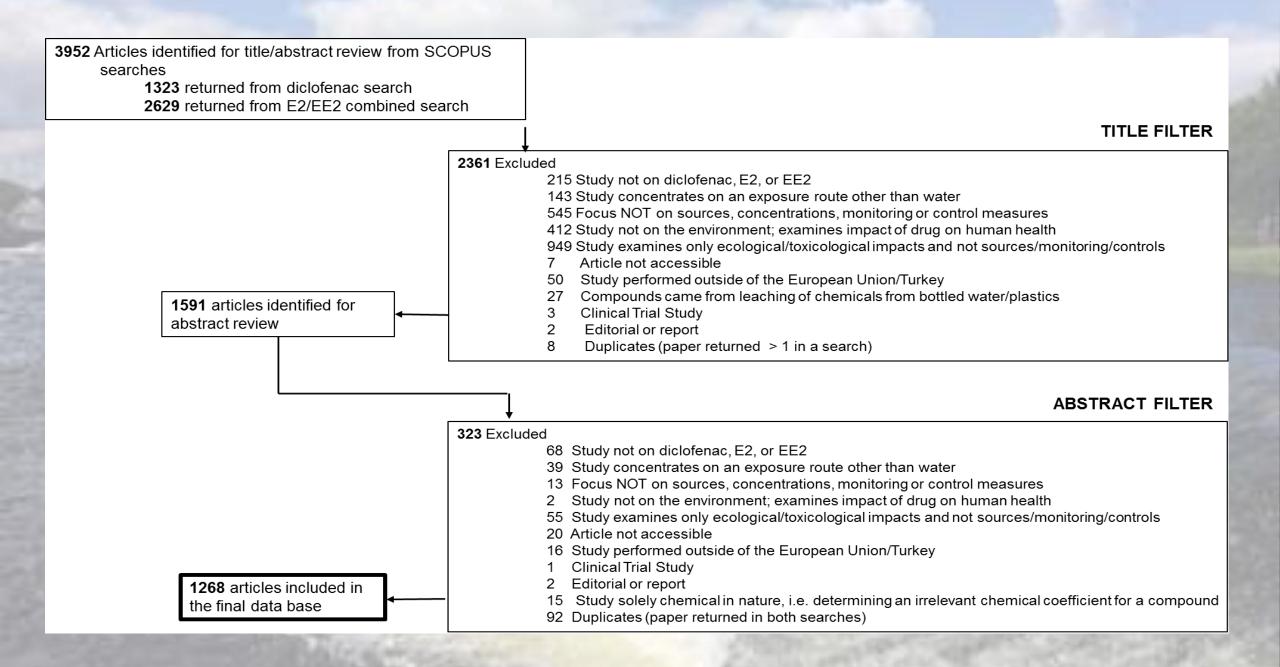
Background

- Pollution of European receiving waters with contaminants of emerging concern (CECS), such as with 17-beta-estradiol (a natural estrogenic hormone, E2), along with pharmaceutically-active compounds diclofenac (an anti-inflammatory drug, DCL) and 17-alpha-ethynylestradiol (a synthetic estrogenic hormone, EE2)) is a ubiquitous phenomenon.
- These three CECS were added to the EU watch list of emerging substances to be monitoring in 2013, which was updated in 2015 to comprise 10 substances/groups of substances in the field of water policy.
- Anticipate their entrance in the water framework directive (WFD) priority subtances list
- Complex problem on many levels suggesting that we are dealing with this
 problem from crisis management perspective but need to move towards
 prevention we need to understand situation by way of monitored data and
 share this openly.

Project objectives

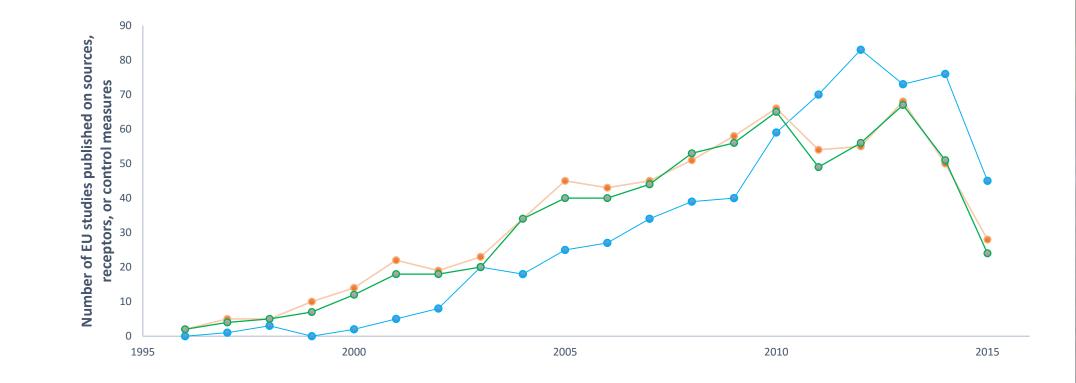

- To ascertain positioning of Ireland as it relates to other EU countries for information on monitoring, sources, receptors and control measures for diclofenac (DCL), E2 and EE2 from 1995 to 2015
- To map locations and concentrations of DCL, E2 and EE2 in Irish receiving waters from 1999-2014
- To develop semi-quantitative risk assessment (RA) model to predict at risk wastewater treatment plants in Ireland in order to inform future research and decision-making for policy.

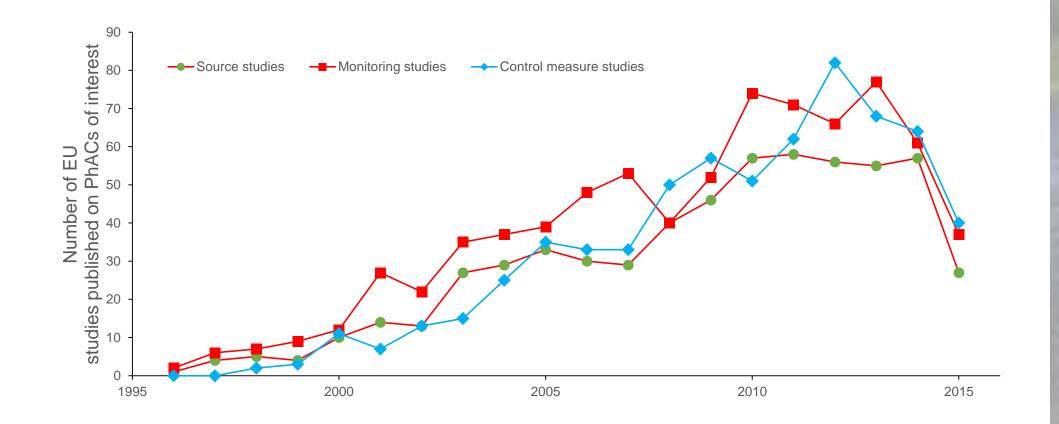
Eligibility criteria for systematic literature review; used for title and abstract filter.


Eligibility Criteria

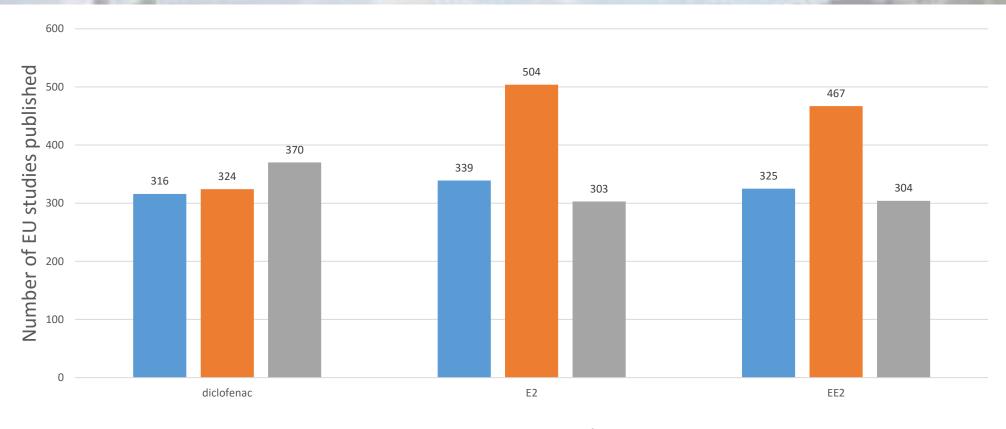
- Must specifically discuss at least one of the three compounds of interest
- Cannot focus exclusively on impacts of compound for human/animal/plant health
- Exclude papers that focus only on ecological/environmental/toxicological impacts unless they also discuss relevant sources, receptors/monitoring or control measures
- Exclude clinical trial studies
- Must include some specific information on sources, receptors/monitoring or control measures
- Cannot focus on exposure routes other than water
- Study cannot be purely chemical, i.e. determining a chemical coefficient
- Exclude any papers on leaching of chemicals from bottled water/plastics
- Must be peer reviewed original article or review, or article in press
- Must be published between 1995-May 2015
- Research must be conducted in Europe or by at least one author affiliated with a European country
- Article must be written in English
- Full text must be available

A systematic literature review was conducted of 3,952 potentially relevant articles over period 1995 to 2015 that produced a new **EU-wide database** consisting of 1,268 publications on DCL, E2 and EE2.

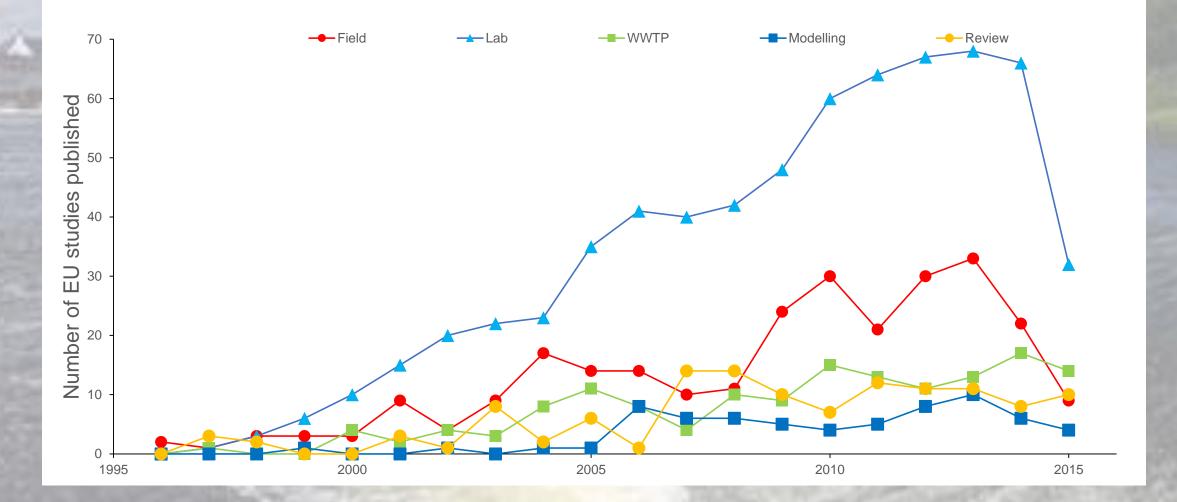

Data extracted from each included article


											Analytical																
							Concentr				method										4.14.		M.L. I				
	Original	Orc	-		Rece	'	ation or	Didafara M		A LL	employed	ulu Tard	Country at al		C			Dess	Den		Autho	lS Author Index	Molecula			uage of	
	combined U			Abstract Course	'		rol effect	Diclofenac E2				"	Country stud		Source	Valuma lan		Page	Page	Citad las DOI I itali	With	AUTNOR INDEX		Chemicals/	Funding Correspondence Ori		
	order id	entifier_Ol		Abstract Sour	ce ing	measu		studied st	udied stud	alea chen	micals detection ex		performed in			Volume Issue	e Art. N		Page end count	,		tions Keywords Keywo				iment Type	Source EID
diclofenac	45	1208	81 Removal of endocrine dis		1	0	1 concentration	1	1	1	1 NS	1 WWTP	Greece	Noutsopo	2015 Chemospi	119	,		S114						82-50-5; humic acid, 1415-93- Noutsopoulos, C.; Eng		Scopus 2-52.0-84922721898
diclofenac/E2/E		1267	80 Pharmaceuticals in groun		1	1	O concentration	1	1	1	1 NS		Czech Repub		2015 Environmi	13	1		3784						water pollution; Hospitals; In Rozman, D.; T.G. I Eng		
diclofenac	-	1266	79 Advanced treatment of u		0	0	1 concentration	1	U	U	1 NS	1 lab	Italy	Rizzo L., Fi	2015 Journal of	3		122							otubes; Drug products; Granu Rizzo, L.; Departm Eng		Scopus 2-s2.0-84920461510
diclofenac		1265	78 Toward the development		0	0	1 concentration	1	0	0	1 NS	1 lab	Greece	Sklari S.D.	2015 Industrial	54	1	2059		and the second se					n compounds; Organic chemi Karabelas, A.J.; Cl Eng		
diclofenac		1264	76 Enhanced ozonation of se		0	0	1 concentration	1	0	0	1 NS	1 lab	Italy/Turkey	Naddeo V	2015 Environmi	36	15	1876	-					gradation; emerging contam			1
diclofenac		1263	74 Is there a risk for the aqu		1	1	O concentration	1	1	1	1 NS	1 field	Greece	Thomaidi	2015 Journal of	283		740							enol, 80-05-7; amoxicillin, 26 Stasinakis, A.S.; D Eng		
diclofenac		1262	73 Lab-scale experimental s	-	1	0	1 concentration	1	0	0	1 NS	1 WWTP		Pomies M	2015 Environm	22	6	4383							uticals; Wastewater treatme Choubert, J.M.; In Eng		Scopus 2-s2.0-84925465429
diclofenac	38		71 Impacts of coagulation or		1	0	1 concentration	1	0	0	1 NS	1 WWTP	Germany	Altmann J	2015 Chemospi			198							11-3, 82228-96-4; carbamaze Altmann, J.; Techi Eng		Scopus 2-s2.0-84923578334
diclofenac	37	1259	70 Identification of some fai		1	0	1 concentration	1	0	0	1 NS	1 WWTP	Spain	Badia-Fab	2015 Journal of			663							379-54-5; carbamazepine, 29{ Caminal, G.; Instit Eng		Scopus 2-s2.0-84910045461
E2/EE2	601	1260	70 Comprehensive two-dim		1	1	0 concentration	0	1	0	1 two-dimens	1 lab	The Netherla	10	2015 Journal of	1380		139		10.1016/j. http)://ww.Institute for Ouyar	ıg, X., Compreher Aroma	itic hydrocarbon:	s; Clamitriptyline, 50-48-6, 5	49-18-8; biperiden, 1235-82-10uyang, X.; Institi Eng	ish Article	Scopus 2-s2.0-84921323262
diclofenac	36	1258	69 Influence of wastewater	: In this Arti	1	0	1 concentration	1	0	0	1 NS	0 lab	Germany	Zucker I., I	2015 Environm	49	1	301	308	10.1021/e http)://ww.School of MrZucke	r, I., School of Me Biolog	ical materials; Co	ont: carbamazepine, 298-46-	4, 8047-84-5; diclofenac, 153C Mamane, H.; Schc Eng	ish Article	Scopus 2-s2.0-84924978088
diclofenac	35	1257	67 Are WWTPs effluents res	c Adverse e	1	1	O concentration/effect	ec 1	0	0	1 NS	0 field	Spain	Maranho l	2015 Ecotoxicol	24	2	368	380	1 10.1007/s: http	o://ww.Physical Che Marar	ho, L Acute bioa: amitri	ptyline; atenolol	; az amitriptyline, 50-48-6, 5	49-18-8; atenolol, BEX 0362/ Maranho, L.A.; Ph Eng	ish Article	Scopus 2-s2.0-84925501570
diclofenac	34	1256	66 Impact of in-sewer transf	(The occurr	1	0	1 concentration	1	0	0	1 NS	1 WWTP	Spain	Jelic A., Ro	2015 Water Res	68		98	108	1 10.1016/j. http	o://ww.Catalan Insti Jelic, J	A., Ca Pharmaceu Waste	water; Anaerobi	c co amlodipine, 88150-42-9,	103129-82-4, 736178-83-9; at Rodriguez-Mozaz, Eng	ish Article	Scopus 2-s2.0-84908408988
diclofenac	33	1255	65 Current anthropogenic pr	e Coastal we	0	1	O concentration	1	0	0	1 LC-MS	0 field	Spain	Pascual-A	2015 Science of 5	03-504		90	199	10.1016/j. http	o://ww.Centro de In Pascu	al-Agi Anthropogi Anthro	opogenic pressur	es; carbamazepine, 298-46-	4, 8047-84-5; ciprofloxacin, 8: Pascual-Aguilar, J Eng	ish Article	Scopus 2-s2.0-84909981733
E2/EE2	600	1254	64 Impact of an estrogenic s	e Despite ef	0	1	0 effect Tests for	re O	1	1	1 NA	0 lab	Germany	Schneider	2015 Journal of	50	3	272	281	10.1080/1 http)://ww.Goethe UnivSchne	ider, Artificial in Effluer	nt treatment; En	doc estradiol, 50-28-2	Schneider, I.; Goe Eng	ish Article	Scopus 2-s2.0-84921324517
diclofenac	32	1253	62 Selection of organic proce	e An increas	1	1	O concentration	1	0	0	1 NA	0 review	Germany	Jekel M., I	2015 Chemospl	125		155	167	10.1016/j. http)://www.Centre for V.Jekel,	M., C Aquatic en Activa	ted carbon; Agric	culti acesulfame, 33665-90-6,	55589-62-3; activated carbor Ruhl, A.S.; Centre Eng	ish Article	Scopus 2-s2.0-84923384281
diclofenac	31	1252	57 Multi-residue analysis of	r Through s	1	0	1 concentration	1	0	0	1 liquid chroi	1 WWTP	Belgium	Vergeynst	2015 Chemospl	119		S2	58	1 10.1016/j. http	o://ww Research Gr Verge	ynst, Emerging p Biorea	ctors; Chromato	gra; diclofenac, 15307-79-6, 1	15307-86-5; venlafaxine, 9341 Demeestere, K.; F Eng	ish Article	Scopus 2-s2.0-84922693681
diclofenac	30	1251	55 Effect of temperature on	r This study	0	0	1 concentration	1	0	0	1 NS	0 lab	Germany	Alidina M.	2015 Chemospl	122		23	31	1 10.1016/j. http	://www.Water ReuseAlidin	a, M., LC-MS/MS; Aquife	ers; Chemicals; El	nvir diclofenac, 15307-79-6, 1	15307-86-5; gemfibrozil, 2581 Drewes, J.E.; Chai Eng	ish Article	Scopus 2-s2.0-84920531613
diclofenac	29	1250	54 Environmental impact of	The occurr	1	0	1 concentration	1	0	0	1 LC-MS-MS	1 WWTP	Portugal	Pereira A.	2015 Environm	136		108	119	10.1016/j. http)://ww Group of He Perein	a, A.I Environme alprazo	olam; azithromy	cin; alprazolam, 28981-97-7;	azithromycin, 83905-01-5; be Silva, L.J.G.; Grou _l Eng	ish Article	Scopus 2-s2.0-84911438964

Email - nrowan@ait.ie


Total combined number of EU studies on sources, receptors or control measures for each DCL, E2 and EE2 from 1995-May 2015, by year

Number of EU studies on at least one of the three pharmaceuticals of interest (DCL, E2 or EE2) investigating: sources of contamination, monitoring data or techniques, or control measures, from 1995-May 2015, by year



Total number of EU studies on each pharmaceutical of interest investigating sources, of contamination, monitoring data or techniques, or control measures, from 1995-May 2015.

■ Sources ■ Monitoring ■ Control Measures

Number of studies on three CECs (DCL, E2 and/or EE2) published in the EU from 1995-May 2015 broken down by type of study: field, laboratory scale, WWTP, modelling and review.

EU country research outputs on DCL, E2 and/or EE2

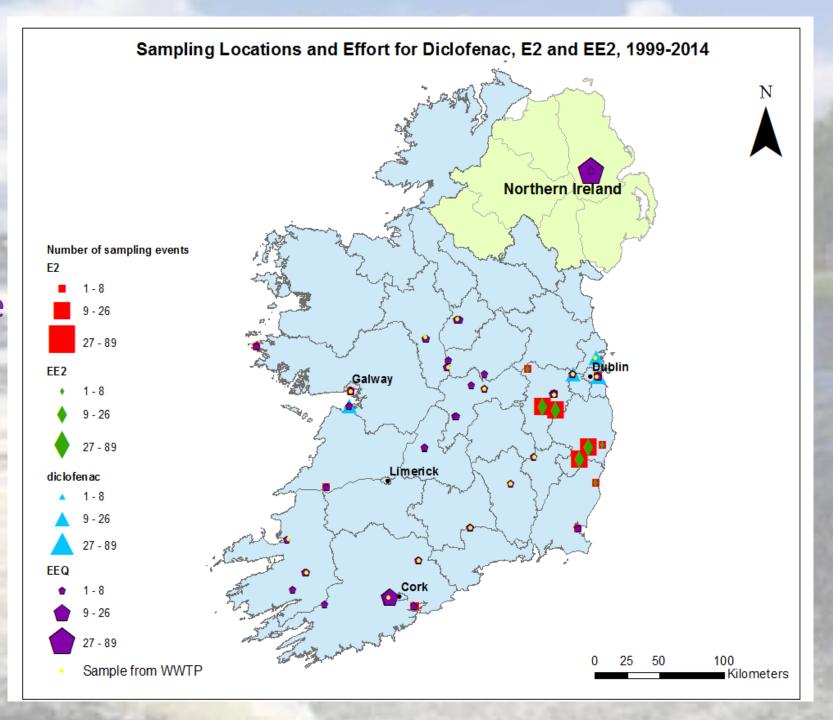
WHY DO BIBLIOGRAPHIC ANALYSIS AND SYSTEMIC REVIEW?

FINDINGS FROM EU-WIDE STUDIES OVER 20 YEAR PERIOD USED TO SUPPORT RA MODEL DEVELOPMENT

IDENTIFY GAPS IN KNOWLEDGE MAJOR BOTTLENECKS -ACCESSING DATA FROM HEALTH BOARDS, PHARMACEUTICAL COMPANIES -REPITATION AND QUALITY OF DATA – NO SHARED REPOSITORY (ICT – BIG DATA) = NATIONAL/EU-WIDE

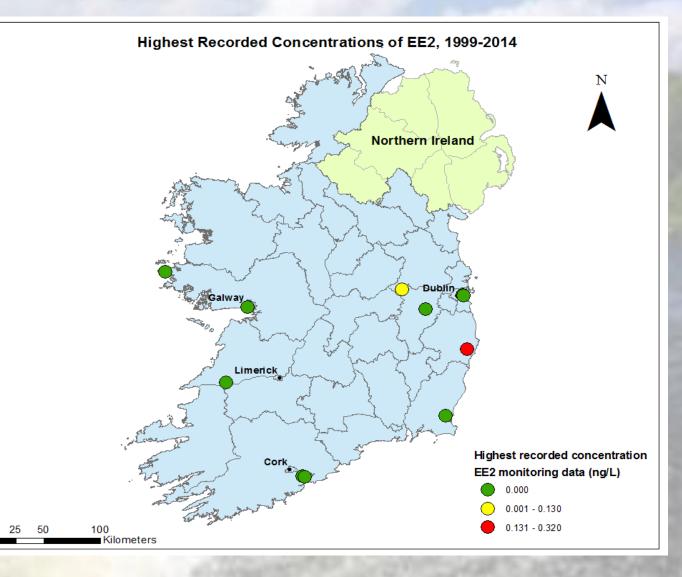
Country	Total number (%) of Studies
-	
Spain	285 (19.2)
Germany	243 (16.3)
United Kingdom	179 (12.0)
France	93 (6.3)
Switzerland	87 (5.8)
Italy	84 (5.7)
The Netherlands	57 (3.8)
Sweden	51 (3.4)
Portugal	50 (3.4)
Greece	43 (2.9)
Belgium	42 (2.8)
Denmark	37 (2.5)
Poland	37 (2.5)
Czech Republic	26 (1.7)
Austria	24 (1.6)
Finland	23 (1.5)
Norway	21 (1.4)
Slovenia	21 (1.4)
Turkey	19 1.3)
Ireland	<mark>17 (1.2)</mark>
Cyprus	14 (0.9)
Hungary	11 (0.7)
Romania	7 (0.5)
Luxembourg	6 (0.4)
Croatia	3 (0.2)
Slovakia	3 (0.2)
Bulgaria	2 0.1)
Estonia	2 (0.1)
Northern Ireland	2 (0.1)
Lithuania	1 (0.06)
Latvia	0 (0)
Malta	0 (0)

Some observations – from 20 year bibliographic analysis and review

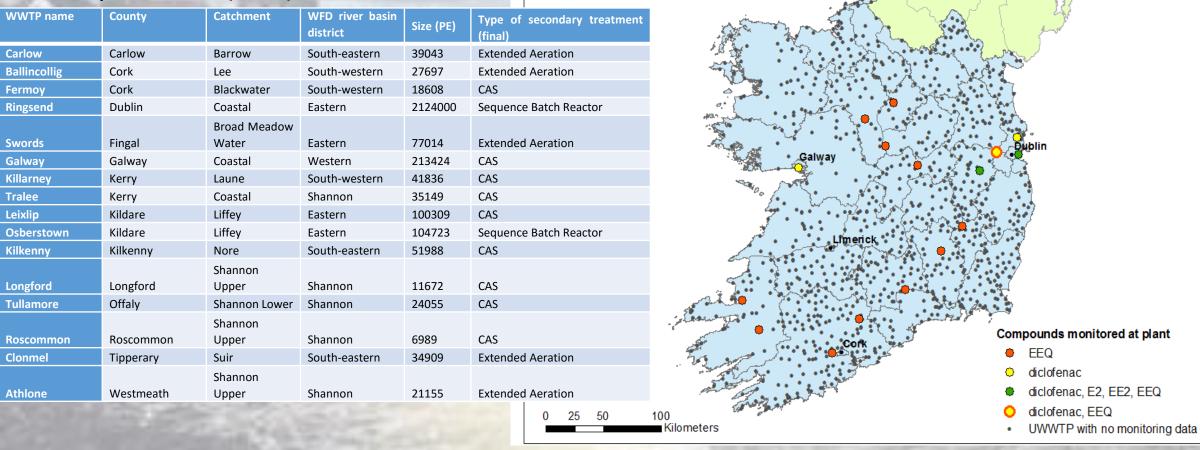

- European surface water concentrations of DCL are typically reported below the proposed annual average environmental quality standard (AA EQS) of 100 ng/l, but that exceedances frequently occur.
- E2 and EE2 surface water concentrations are typically below 50 ng/l and 10 ng/l respectively, but these values greatly exceed the proposed AA EQS values for these compounds (0.04 and 0.035 ng/l respectively). However, levels of these CECs are frequently reported to be disproportionately high in EU receiving waters, particularly in effluents at control points that require urgent attention.
- Overall it was found that DCL and EE2 enter European aquatic environment mainly following human consumption and excretion of therapeutic drugs, and by incomplete removal from influent at urban wastewater treatment plants (WWTPs).
- Current conventional analytical chemistry methods are sufficiently sensitive for the detection and quantification of DCL but not for E2 and EE2, thus alternative, ultratrace, time-integrated monitoring techniques such as passive sampling are needed to inform water quality for these estrogens.
- DCL appears resistant to conventional wastewater treatment while E2 and EE2 have high removal efficiencies that occurs through biodegradation or sorption to organic matter.

GIS mapping of DCL, E2 and EE2 occurrence in Irish Receiving Waters

- Date water samples were taken including day, month and year
- Type of study measuring concentration for DCL, E2, EE2 or estradiols equivalents (EEQ)
- Method of sampling (grab, passive) + Matrix studied (marine water, lake water, ground, effluent etc)
- GPS coordinates for sampling location identified both in WGS84 and Irish National Grid using publications or reverting to author
- Location of WWTPs via EPA via primary discharge licence
- Concentration (ng/L recorded) for each sampling event
- If multiple samples taken at same location then each sampling event recorded separately
- Two aspects of data mapped distribution of sampling events and concentration of each compound at location
- In order to map sampling events data divided into 1999-2004, 2005-2009, 2010-2014
- Data mapped using ArcGIS Desktop software a geodatabase was created with sampling data from previous publications were read into ArcMap as .csv tables and exported as shapefiles for full functionality
- Data on human population distribution were downloaded from Central Statistics Office "StatBank Ireland" including country boundaries, city locations, population density
- EPA's Geo Portal utilised for river basin catchments, WFD river basin districts, WWTP locations and attribute data, and WFD protected areas


Summary of national monitoring distribution and frequency for: diclofenac (blue triangles), E2 (red squares), EE2 (green diamonds), estradiols equivalents (purple pentagons) in Ireland from 1999-2014.

Symbol size increases with increasing number of samples taken at each location.

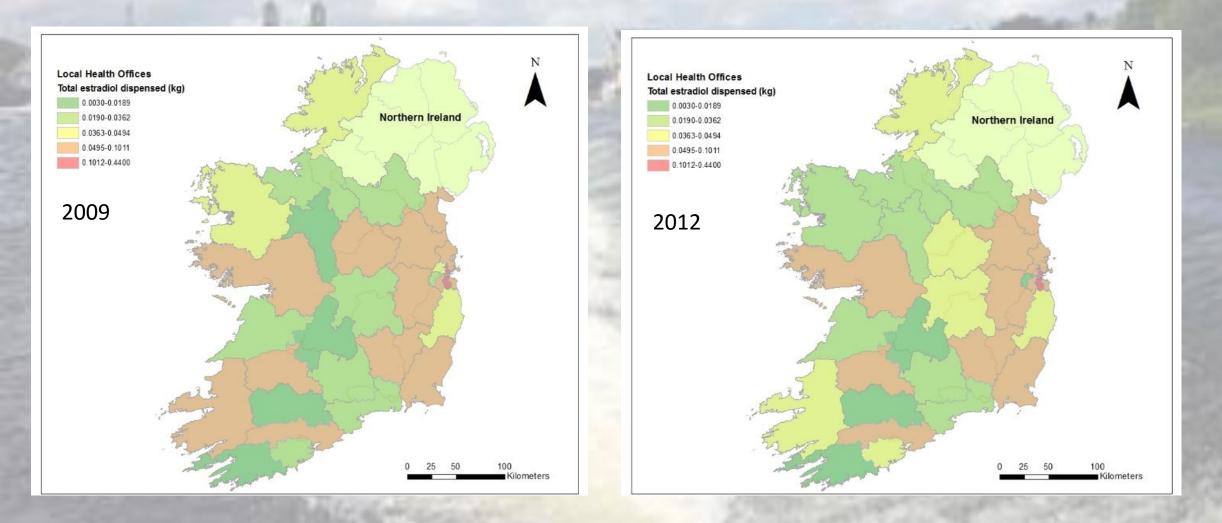


EXAMPLE

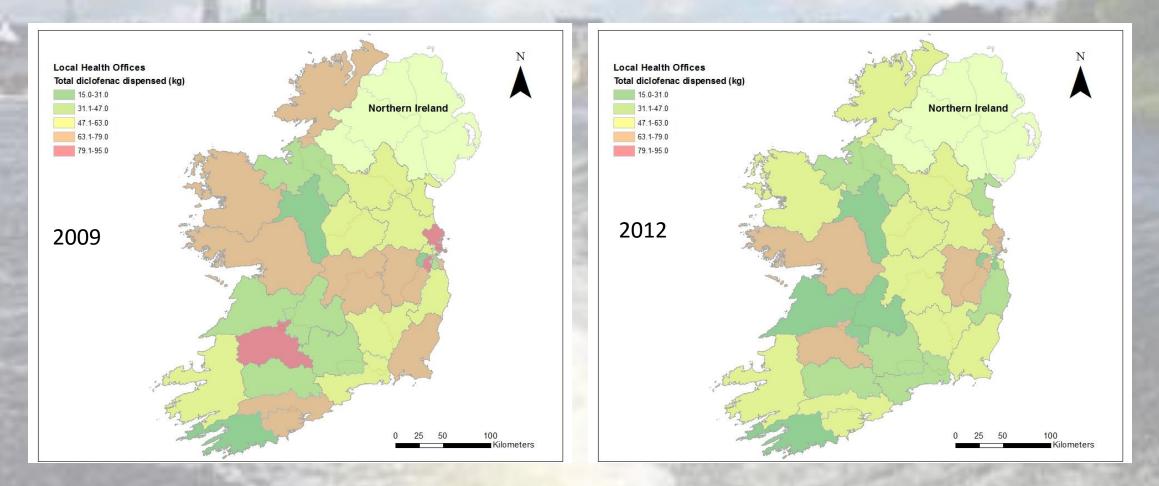
Highest recorded concentrations (ng/l) of EE2 at each sampling site where concentration monitoring data were collected. Relative concentration values are indicated by the symbol colour, where low concentrations are indicated by greens and high by reds. Zero values represent no detects.

Distribution of urban wastewater treatment plants (UWWTPs) with existing monitoring data on diclofenac, EE2 and/or estradiol equivalents (EEQ).

McGee, C., Brougham, J., Roche, J., Fogarty, A. (2012). First report of intersex roach residing in Irish rivers downstream of several wastewater treatment plants. Royal Irish Academy, Vol 112B, No. 1, pp 69-77.


Urban Wastewater Treatment Plants with Monitoring Data on Watch List Compounds

Northern Ireland


Pilot tertiary treatment facility at WWTP - Ireland

Hayes, J., Kirf, D., Garvey, M., Rowan, N. (2013). Disinfection and toxicological assessments of pulsed-plasma gas-discharge and pulsed UV light treated water containing the waterborne enteroparasite *Cryptosporidium parvum*. *Journal of Microbiological Methods* (94); 325-337. Barrett, M., Fitzhenry, K., O'Flaherty, V., Dore, W., Rowan, N., Clifford, E. (2016). Detection, fate and inactivation of pathogenic norovirus employing settlement and UV treatment in wastewater treatment facilities. *Science of the Total Environment*. [Oct 15; 568:1026-36. doi:10.1016/j.scitotenv.2016.06.067. Heat map representing the total volume (kg) of EE2 dispensed (not prescription) in each LHO according to HSE records from three reimbursement schemes; the General Medical Services (GMS), the Drug Payment scheme (DP) and the Long Term Illnesses (LTI) scheme

Heat map representing the total volume (kg) of DICLOFENAC dispensed in each LHO, according to HSE records from three reimbursement schemes

GOOD AGREEMENT WITH MONITORED HIGH OCCURRENCES OF DCL AND LHO LOCATIONS OF HIGH DISPENSING DRUG DATA

SEMI-QUANTIATIVE RISK ASSESSMENT MODEL

SPECIFIC FOR THREE WATCH LIST PHARMACEUTICAL COMPOUNDS in IRELAND USING WWTPs as CRITICAL CONTROL ASSESSMENT POINTS

RA Model Development

- Model was designed following risk screening guidelines of Section 10, Drinking Water Safety Plans (EPA Handbook on the implementation of the Regulation for Water Service Authorities for Public Supplies (2010)
- Risk Screening Methodology for *Cryptosporidium* was adapted to consider risk factors specific for discharge of PhACs of interest
- General principles of RA model align with EPA-sanctioned risk screen methodology, for example, it uses the Source-Pathway-Receptor (SPR) concept to define relevant input parameters
- Scoring system was employed enabling determination of each WWTP as low, medium or high risk
- RA model involves calculating risk score for four main input parameters using data for DCL, E2 and EE2 for 16 WWTPs (varying sizes and distributed evenly) with cumulative (additive) risk designated as low, medium or high

RISK ASSESSMENT (Phase 1) Risk:

Probability of the occurrence of, and magnitude of the consequence of, and unwanted adverse effect on a receptor

Risk Assessment:

Process of establishing, to the extent possible, the existence, nature and significance of risk

KEY CONCEPTS to RISK ASSESSMENT Conceptual Model

Text/schematic hypothesis of the nature and for of contamination, potential migration of contamination, potential description of the ground and groundwater) and potential for and, developed on the basis of information from the phase 1 investigation and defined during subsequent phases of investigation

Source – Pathway - Receptor

from BS10175; 2001

Total WWTP Risk Score for a pharmaceutical

Input 1 score (source of influent)

Input 2 score (removal due to treatment)

Input 3 score (chemical properties of PhAC)

Input 4 score (fate of effluent)

Total Risk Score

1 Source of influent factors used in risk assessment model to calculate input one risk score. White indicates factor considered for all 3 compounds, light grey indicates factor considered only for E2 and EE2, dark grey indicates parameter considered only for E2. The colour of the risk score indicates whether there is increased risk (positive values, red), no impact on risk (zero values, blue) or decreased risk (negative values, green).

Factor	Source factor description	Risk Score	Actual Score
1- Agglomeration generated load (AGL)	PE served <500	1	
	PE served 501-5000	2	-
[size of population serviced by each WWTP - useful	PE served 5001-20,000	3	
indicator of PhAC emissions as organic biodegradable	PE served 20,001-50,000	4	
load of a WWTP expressed in population equivalents (PE) – obtained from EPA	PE served > 50,001	5	
2- Domestic septic tank sludge/effluent received?	No	0	
	Yes	1	
3- Industrial sludge/effluent received?	No	0	
{Also considers hospital effluent}	Yes	1	
4- Gender ratio in county, women:men	≤ 1	0	
[CSO – 2011 Census)	> 1	1	
5- Cattle score (particularly dairy)	No cattle/calves in region	0	
[livestock numbers via CSO StatBank online - spatial	\leq 80 livestock unit per ha forage area in region	2	
resolution to regional authority divided by total land area}	> 80 livestock unit per ha forage area in region	3	
6-Sheep score	No sheep/lambs in region	0	
	\leq 70 livestock unit per ha forage area in region	1	
	> 70 livestock unit per ha forage area in region	2	
7- Pig score	No pigs in county	0	
	\leq 20 livestock unit per ha forage area in region	1	
	> 20 livestock unit per ha forage area in region	2	
Total for Input 1			

Missing drug utilisation or prescription data as important factor – yet to be incorporated

2. Removal due to treatment

Factor	Treatment factor description	Risk	Actual	
		Score	Score	
1- Tertiary treatment	Present year round	-4		
	Implemented seasonally (e,g. bathing season	-2		
(extracted EPA – AERs 2014) = mostly UV	Absent year round	0		
2- Type of secondary treatment (including nutrient removal)	Extended aeration (N removal) [25.7% of WW load in PE]	-2		
(extracted EPA AER 2015)	Sequence batch reactor (with or without P removal)	0		
	Conventional activated sludge (with or without P removal)	0		
3- WWTP quality measurement	Pass most recent UWWTD compliance criteria	0		
[BOD, COD, TSS and where applicable, N and P]	Fail most recent UWWTD compliance criteria	1		
4- Monitoring data [Monitoring DCL, E2, EE2 not legally required, yet for WFD	Monitoring data demonstrate effluent levels below WFD limits or best-published PNEC values	-3		
compliance – this relates to independent research data	No monitoring data available	0		
measured at WWTPs in Ireland and findings shown]	Monitoring data demonstrate effluent levels above WFD limits or best-published PNEC values	3		
Total for Input 2	1	1		

Treatment, operation and management factors used in risk assessment model to calculate input two risk score. The colour of the risk score indicates whether there is increased risk (positive values, red), no impact on risk (zero values, blue) or decreased risk (negative values, green)

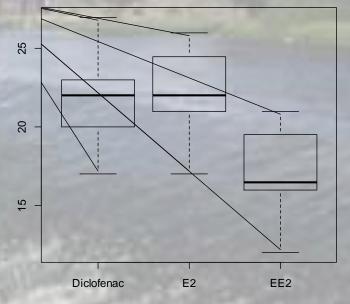
3. Chemical properties of PhAC

Factor	Chemical properties factor description	Risk Score	Actual Score
1- Metabolism	Rate of excretion 0-25%	1	
[Rate of excretion, combined with drug usage data, will inform how		2]
ich drug ends up in wastewater -rates determined from literature for	Rate of excretion 51-75%	3]
DCL, E2, EE2}	Rate of excretion 76-100%	4]
2- Sorption potential to sludgeLiklihood correlated to physciochemical parameters:	Low water solubility/high hydrophobicity, functional group polarity, ion exchange, chelation to other compoundsidentified through K_{ow} , D_{ow} , and K_d values, and reports from literature	1	
[octanol-water partition coefficient – Kow) or d-octanol-water partition coefficient –Dow; or experimentally determined water-distribution coefficient – Kd value}	High water solubility/low hydrophobicity, functional group polarity, ion exchange, chelation to other compoundsidentified through K_{ow} , D_{ow} , and K_d values, and reports from literature	4	
3- Degradation potential	High degradation through photolysis, hydrolysis or other mechanisms, identified through compound half-life in the environment and reports from literature	1	
	Low degradation through photolysis, hydrolysis or other mechanisms, identified through compound half-life in the environment and reports from literature	3	
4-Potenital for deconjugation of conjugated metabolites during	Not found to occur in the literature	0	
treatment	Low potential, identified through literature	1	1
	High potential, identified through literature	2	
Total for input 3			

missing compound specific or group toxicity unitpicked up via ICRAPHE 2016 presentations

4. Fate of Effluent

Factor	Fate factor description	Risk Score	Actual Score
1- Type of receiving water	Coastal	1	
	Transitional/Estuary/River/Lake	2	-
	Stream	3	1
	Ground	4	
2- Proximity to sensitive area	Primary discharge location not at/near sensitive area	0	
[Identified in 2001 and 2010 Urban WWT regulations			
– 2015 EPA AERs]	Primary discharge location at/near sensitive area	1	
3- Flow of receiving water	High (>10 m3/s)	1	
{hydrometric monitoring station closest to WWTP the 95% percentile flow (m3/s) obtained from Water Data	$1 Mean (1-10) m_{3}(s)$	2	
Unit of EPA}	Low (<1 m3/s)	3	1
Total for Input 4		1	


Fate of treated effluent factors used in risk assessment model to calculate input four risk score. The colour of the risk score indicates whether there is increased risk (positive values, red), no impact on risk (zero values, blue) or decreased risk (negative values, green).

Factor scoring for each PhAC of interest for risk assessment model, input three. Final score assigned in model for each factor is in colour and in bold, followed by references used to determine the score

PhAC	Metabolism	Sorption	Degradation	Conjugation
Diclofenac	3	4	3	2
	· ·	(Martín et al, 2012; Patrolecco et		
	1997)	al, 2015; Radjenović et al, 2009;		Lacey et al, 2012)
		Suárez et al, 2012; Ternes et al,		
	Sillanpää, 2014; Zhang et	,	2014)	
	al, 2008)	Reviewed in Vieno and Sillanpää (2014)		
17-beta-estradiol (E2)	2	1	1	0
		(Ben Fredj et al, 2015; Carballa et	(Abargues Llamas et al, 2012b;	(Johnson et al,
	D'Ascenzo et al, 2003; de		Alvarino et al, 2014; Petrie et al,	
	Mes et al, 2005)		2014; Suárez et al, 2008)	
1				
17-alpha-	2	1	2	0
ethinylestradiol (EE2)	(de Mes et al, 2005; Reed	(Ben Fredj et al, 2015; Martín et	(Abargues Llamas et al, 2012b;	(Johnson et al,
	et al, 1972)	al, 2012; Ternes, 2006)	Alvarino et al, 2014; Petrie et al, 2014; Suárez et al, 2008)	2000)

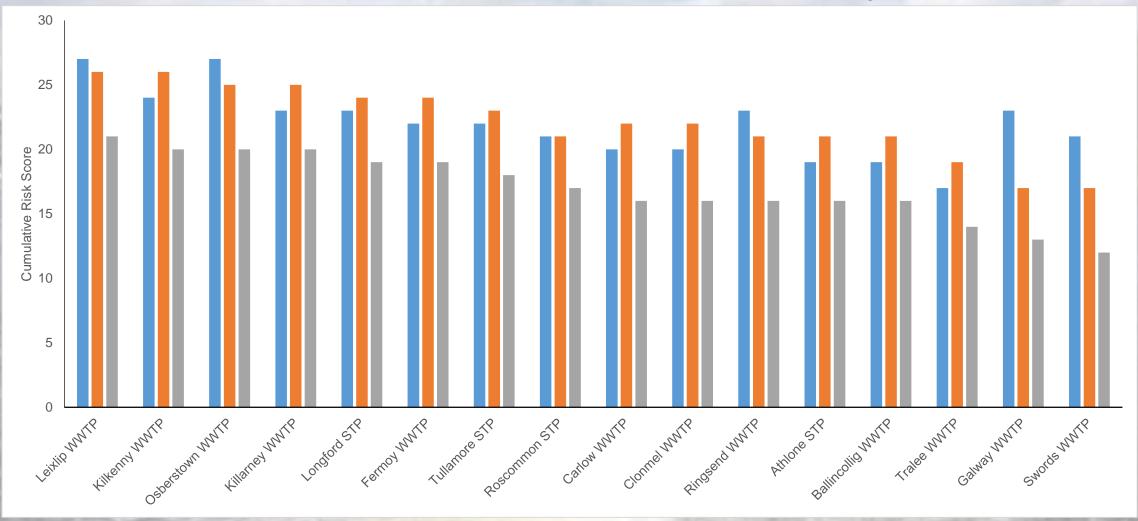
Summary statistics of cumulative (final) risk scores assigned during the case study to the 16 WWTPs included for analysis by the risk assessment model for diclofenac, E2 and EE2.

Summary statistic	Diclofenac	E2	EE2	100
Maximum	27	26	21	
Minimum	17	17	12	Cumulative Risk Score
Mean	21.94	22.13	17.06	ulative R
Median	22	22	16.5	Cum
Mode	23	21	16	
Standard	2.72	2.85	2.67	
Deviation	The second	-	1212.2	

Pharmaceutical

DICLOFENAC WWTP Name	Input 1 (source of influent)	Input 2 (removal during treatment)	Input 3 (chemical properties of compounds)	Input 4 (fate of treated effluent)	Total	E2 WWTP Name	Input 1 (source of influent)	Input 2 (removal during treatment)	Input 3 (chemical properties of compounds)	Input 4 (fate of treated effluent)	Total
Carlow	5	-2	12	5	20	Carlow	12	1	4	5	22
Ballincollig	5	-2	12	4	19	Ballincollig	12	1	4	4	21
Fermoy	5	0	12	5	22	Fermoy	12	3	4	5	24
Ringsend	6	2	12	3	23	Ringsend	13	1	4	3	21
Swords	5	1	12	3	21	Swords	12	-2	4	3	17
Galway	6	3	12	2	23	Galway	11	0	4	2	17
Killarney	6	0	12	5	23	Killarney	13	3	4	5	25
Tralee	6	-4	12	3	17	Tralee	13	-1	4	3	19
Leixlip	7	3	12	5	27	Leixlip	14	3	4	5	26
Osberstown	7	3	12	5	27	Osberstown	14	2	4	5	25
Kilkenny	7	0	12	5	24	Kilkenny	14	3	4	5	26
Longford	5	0	12	6	23	Longford	11	3	4	6	24
Tullamore	4	0	12	6	22	Tullamore	10	3	4	6	23
Roscommon	3	0	12	6	21	Roscommon	8	3	4	6	21
Clonmel	6	-2	12	4	20	Clonmel	13	1	4	4	22
Athlone	5	-2	12	4	19	Athlone	12	1	4	4	21

EE2


EE2	Input 1 (source of	Input 2 (removal during	Input 3 (chemical properties of	Input 4 (fate treated	of
WWTP Name	influent)	treatment)	compounds)	effluent)	Total
Carlow	5	1	5	5	16
Ballincollig	6	1	5	4	16
Fermoy	6	3	5	5	19
Ringsend	7	1	5	3	16
Swords	6	-2	5	3	12
Galway	6	0	5	2	13
Killarney	7	3	5	5	20
Tralee	7	-1	5	3	14
Leixlip	8	3	5	5	21
Osberstown	8	2	5	5	20
Kilkenny	7	3	5	5	20
Longford	5	3	5	6	19
Tullamore	4	3	5	6	18
Roscommon	3	3	5	6	17
Clonmel	6	1	5	4	16
Athlone	6	1	5	4	16

Results of case study evaluating 16 Irish WWTP using the developed risk assessment model for diclofenac, E2 and EE2

Diclofenac		E2		EE2	
WWTP	Risk	WWTP	Risk	WWTP	Risk
Name	Classification	Name	Classification	Name	Classification
Leixlip	High	Leixlip	Medium	Leixlip	Medium
Osberstown	High	Kilkenny	Medium	Kilkenny	Medium
Kilkenny	High	Osberstown	Medium	Osberstown	Medium
Killarney	High	Killarney	Medium	Killarney	Medium
Longford	High	Longford	Medium	Longford	Medium
Ringsend	High	Fermoy	Medium	Fermoy	Medium
Galway	High	Tullamore	Medium	Tullamore	Medium
Fermoy	High	Carlow	Medium	Roscommon	Medium
Tullamore	High	Clonmel	Medium	Carlow	Medium
Roscommon	Medium	Ringsend	Medium	Clonmel	Medium
Swords	Medium	Roscommon	Medium	Ringsend	Medium
Carlow	Medium	Athlone	Medium	Athlone	Medium
Clonmel	Medium	Ballincollig	Medium	Ballincollig	Medium
Athlone	Medium	Tralee	Medium	Tralee	Medium
Ballincollig	Medium	Galway	Medium	Galway	Medium
Tralee	Medium	Swords	Medium	Swords	Medium

WWTPS are ranked for each PhAC from highest-lowest risk, based on the cumulative (total) risk scores assigned by the model. A colour change indicates a decrease in the cumulative risk score (red = higher risk \rightarrow green = lower risk), and WWTPs that share the same colour had the same final score, and thus are ranked equally.

Cumulative (total) risk scores for each of the 16 WWTPs included in the case study, assigned via the risk assessment model for diclofenac (blue bars), E2 (red bars) and EE2 (green bars).

Recommendations/Policy Implications for Ireland

Advocate for acceptability of integrative monitoring methods for WFD reporting (short term, EPA and governmental departments)

- Currently, the proposed WFD AA EQSs for E2 and EE2 are lower than most limits of detection for standard chemical analyses
- Given positive results and outcomes from studies that utilise effect-based (biological) monitoring, passing sampling or an integrated monitoring approaches, advocate the acceptance of these types of methodologies for substance reporting.

Continue funding Irish projects on emerging/established pollutants (short-term, EPA)

EPA-funded research is currently the only significant source of aquatic monitoring data for watch-list substances in Ireland to expand for other substances/groups of substances in aquatic and other environmental matrices (sludge, sediment, biota)

Develop and extend the semi-quantitative RA model created during this project (short term, EPA)

- *Additional model development needed to augment predictive ability and robustness, and to increase significance and accuracy of its conclusions
- *Consider alignment with other European RA models for future development
- Future studies to include a combination of field-based monitoring of PhAC concentrations in influent, effluent and receiving waters (for model validation)

Recommendations/Policy Implications for Ireland

Identify sources and improve availability of PhAC data (short term, EPA)

- Project identified sources of national PhAC (usage) consumption data quickly, but experienced delays with data acquisition
- More data should be collected on prescriptions written and dispensed by public and private health agencies in Ireland
- Such data should be made available to researchers in Ireland
- Find means to hurdle the unavailability of commercially-sensitive data such as PhAC sales/production information

Consider more than just the parent compound (short term, future research)

In order to truly understand the occurrence and resulting environmental impact of PhACs in aquatic matrices, there is a need to measure metabolites, conjugates and transformation products

Recommendations/Policy Implications for Ireland

Institute change to the regulation of pharmaceutical products (long term, departments and agencies

Currently, pharmaceutical companies do not consider the environmental persistence or recalcitrance of the compounds they produce

*****We recommend changes to policy be considered, both nationally and internationally.

Sefore a product is approved for market, some toxicity testing is typically required, but there is a scenario or mechanism in which the human benefits that come form consumption of PhAC could be outweighed by negative environmental impacts

*At minimum, we recommend that, in addition to toxicity testing, basic evaluations of the environmental persistence of compounds be required in order to bring a new substance to market

In long term, it may be advisable for Ras of PhACs to include environmental risk and persistence and not just the risk to the consumer of the product

THANK YOU

Acknowledgements

Co-investigators:

Dr Erin Jo Tiedeken (AIT) Dr Alexander Tahar (AIT) Dr Eoghan Clifford (National University of Ireland, Galway) Collaborators:

Dr Brendan McHugh (Marine Institute, Ireland) Dr Enda Cummins (University College Dublin, Ireland) Fabio Bacci (University College Cork, Ireland

FUNDING SPONSOR – EPA Strive Programme (Project No. 185).